The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines


Free download. Book file PDF easily for everyone and every device. You can download and read online The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines book. Happy reading The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines Bookeveryone. Download file Free Book PDF The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines Pocket Guide.
Expeditionary Learning

Content and methods courses in higher education, as well as other professional learning activities, need to enhance the competencies of educators of children from birth through age 8 in all aspects of science learning trajectories: science goals and content, developmental progressions for a variety of science topics, and instructional tasks and strategies. As discussed in Chapter 4 , research on socioemotional development illuminates its importance for successful learning. Many young children in early education settings and early elementary classrooms arrive with prior experiences of adversity and chronic stress that can affect their behavior and learning, in part owing to biological effects on brain and behavior see Chapters 3 and 4.

Children experiencing chronic stress and adversity may have other specific needs for support as well, but such a learning environment can help buffer stress for these children. Providing such an environment not only helps these children, but also helps educators maintain a constructive classroom environment that is not regularly subject to behavioral disruptions.

Although the socioemotional development of young children is receiving increased attention, this domain typically is not well supported in the instructional and other practices of educators. National surveys indicate. For example, faculty in teacher training institutions reported that, compared with practices across other developmental domains, their graduates were least prepared to address the needs of children with challenging behavior Hemmeter et al.

Some curricular resources and other intervention appproaches provide effective approaches for fostering the socioemotional development and learning of children in early childhood and early elementary settings and enhancing supportive relationships CASEL, ; Durlak, ; Pianta et al. These approaches focus on various aspects of socioemotional competence, including self-regulation and prosocial behaviors toward peers and adults.

Recently Viewed

In most cases, these approaches have both strengths and weaknesses and mixed evidence for success across elements of socioemotional development. However, evaluations have shown that, when implemented at scale with appropriate supports, these approaches can improve some aspects of socioemotional competence, in some cases especially for children at highest risk or those who begin school with low self-regulation competencies Morris et al. Box lists some examples of these approaches. Fixsen and colleagues suggest that it is the combination of effective intervention practices and programs and effective implementation supports that results in positive outcomes for children and families.

For educators to implement interventions with fidelity, program-wide implementation supports, including professional learning activities, are needed. Although there is a substantial body of literature on school-wide approaches to implementing tiered behavior support models in elementary, middle, and secondary schools, the literature on implementation of these models in early childhood settings is in its infancy Fox and Hemmeter, ; Frey, ; Stormont et al.

Product description

Interventions also have been developed that are aimed at fostering cognitive self-regulation and other cognitive processes, frequently referred to collectively as executive function see Chapter 4. The rapid development of executive function in the early years makes the use of such interventions optimal during that period, although no age is too late e. Some studies have shown enhancement of such capabilities with computer games e. The latter often include specific teaching approaches such as guiding impulsive children to self-monitor their behavior by talking to themselves four different interventions of this sort were effective; see Reid et al.

As suggested by Gilliam , educators are likely to benefit from consultation with early mental health experts to best understand how to work with children in need of specialized support in their classrooms. Child mental health consultants can provide educators with guidance on classroom management and instructional practices for all children as well as individualized consultation for particular children based on classroom observations, and offer teachers continuing support as they incorporate these practices see Amini Virmani et al.

Unfortunately, as noted 15 years ago in the National Research Council and the Institute of Medicine report From Neurons to Neighborhoods , most communities lack expertise in child mental health services and consultation, and no well-developed national infrastructure exists for training developmentally oriented clinicians in providing these services see also Osofsky and Lieberman, More broadly, the importance of socioemotional health to early learning calls for the involvement of multiple service systems that affect young children and their families in meeting the special needs of young children facing mental health challenges Osofsky and Lieberman, Thus, beyond incorporating developmental knowledge in this area into educator preparation, it is important to also do so across sectors and settings, for professionals in pediatric practice, the child welfare system, early intervention, special education, childcare and after-school care, and programs for children with special needs.

This would help ensure that children experiencing mental health challenges would be identified and provided with appropriate services that would be aligned across different programs with which these children come in contact.

IN ADDITION TO READING ONLINE, THIS TITLE IS AVAILABLE IN THESE FORMATS:

Such cross-sector preparation of professionals concerned with young children could even be conducted collaboratively across professional communities. Such a cross-sector approach is especially important given that these different professional sectors have distinctly different professional reference groups and funding streams that tend to make their efforts insular rather than collaborative, even though the same child is the focus of their attention. An additional benefit of cross-sector collaborative training in the socioemotional needs of young children is that it would enable professionals to coordinate assistance across multiple generations.

The connections between the well-being of an adult and the well-being of a child who has an emotional attachment to that adult make it important to coordinate supportive services to parents and children within the family IOM and NRC, Similarly, the benefits demonstrated by intervention programs aimed at supporting the developmental health and learning of young children by providing broader family support should spur efforts to consider how children can be assisted through a two-generational approach.

Chase-Lansdale and Brooks-Gunn, Similar considerations apply to the associations between the well-being of children and the emotional health of those who care for and educate them outside the home. The use of technology in educational settings can take two major forms, both of which have implications for the competencies needed by professionals. In terms of professional competency, educators must have proficiency in technology as a set of tools that can enhance pedagogy, knowledge of how and when children learn through what kinds of technology and the ability to integrate that knowledge into their pedagogy and lessons, and proficiency in teaching children how to use technology and acquire digital literacy skills.

The second entails the use of technology to facilitate other aspects of professional practice, such as assessment of children, creation and management of the learning environment, documentation, information sharing, and communication with families and with other practitioners. This section focuses primarily on the first form of technology use: what knowledge teachers need to have about how children interact with and learn through technology and what skills they need to put that knowledge into practice in the classroom. While there is still much to learn, the science of how children relate to new media has expanded through research over the past decade that offers insights into how, and at what age, young children may develop cognitive skills from using different types of new technology, as well as when profes-.

According to a recent national survey of 1, American families, more than 8 in 10 children ages use digital media every week and two-thirds have tablets or e-readers. Developmental scientists long have wondered how babies make sense of the moving image. Some research has shown that until about 18 months of age, infants tend to reach out to touch or grasp an image whether a picture or a video instead of pointing to it, as they do after 18 months DeLoache et al.

In other words, it appears that infants eventually progress to a stage of cognitive development in which they comprehend that an image is a symbol that represents something instead of being the thing itself. A separate body of research has focused on gleaning evidence that infants and toddlers can learn from what they see on a video screen, and at what age. This deficit has been seen in children younger than 12 months old and up through age 3.

It takes many forms and has been shown in some experiments to be overcome by repetition; that is, if a child sees something on video multiple times, the child can learn from it Barr and Hayne, ; Barr et al. A few studies in the mids showed associations between television viewing in early childhood and poor cognitive outcomes Christakis et al. In these cases and many others, however, while researchers typically controlled for socioeconomic status of the parents, they did not include information on what types of shows children were watching.

Build the Brain the Common Core Way | SAGE Publications Inc

More recent studies have rectified this omission by examining the content of the viewing in addition to the quantity. One such study found links between infants regularly watching television shows made for. Another found associations between attention problems and television viewing for children who watched violent programming, but not educational shows, before age 3 Zimmerman and Christakis, More insight comes from studies on video specifically designed to be educational for children. Studies using randomized controlled trials yielded evidence showing that children learned new vocabulary words and skills such as problem solving and self-regulation after watching videos with an intentional pedagogical approach or curriculum Singer and Singer, Longitudinal studies have shown a link between viewing Sesame Street before kindergarten and school readiness, as well as positive outcomes in high school Anderson et al.

It is important to emphasize that any benefits of technology will depend on the use of high-quality educational technology implemented well see, e. Limited research has examined how different technologies can be used effectively with students at different ages for different subjects, how to incorporate digital content into curricula, and how best to employ technology to enable early skill development. Although these research questions warrant further exploration, available research provides some guidance on how technology can contribute to effective early childhood settings Clements and Sarama, ; Sarama and Clements, Appropriate implementation of high-quality educational technology can help teaching and learning be more effective, efficient, and motivating Bereiter and Scardamalia, ; Bus and Kegel, ; Clements and Sarama, , ; Clements et al.

High-quality educational technology, implemented well in meaningful con-. These benefits extend across diverse populations and may be especially important for children with special needs e. In some cases, the use of educational technology has been shown to increase social interactions, especially those centered around subject-matter content.

Looking for other ways to read this?

These social interactions in turn generate increased use of language Clements and Sarama, Technology-assisted instruction also can help build prereading and reading skills e. Educational technology also can support the teaching and learning of science, technology, engineering, and mathematics Clements and Sarama, ; NMP, ; NRC, ; Sarama and Clements, There can also be collateral benefits for digital literacy: the integration of an interactive literacy program into curriculum increases computer skills, computer self-efficacy, and enjoyment of computers Ross et al.

Most recently, debates about the value of video in early childhood have centered on whether any positive impact is evident when educational videos are watched before the age of 24 months.


  • Common Core State Standards: Nonfiction Versus Fiction.
  • You are here?
  • Embers (The Guild of the Cowry Catchers Book 1);

Thus far the few studies addressing this question have focused on word learning, and their results are mixed: two showed that children younger than 24 months of age cannot learn words from videos even when the videos are explicitly designed to teach them those words; another two showed that children just a few months shy of 24 months are, in fact, able to learn the words DeLoache et al.

With the research still nascent and unsettled, parents and early educators continue to receive mixed messages about the value of so-called baby videos. Another study showed that 2-year-olds using touch screens learn more from the on-screen content than those who only watch, as long as they are asked to touch specific areas of the screen that relate to the task they are learning Choi and. Kirkorian, A similar study showed that the same caveat applies to word learning as well Kirkorian et al.


  1. Product details!
  2. The Path To Get There A Common Core Road Map For Higher Student Achievement Across The Disciplines;
  3. Build the Brain the Common Core Way?
  4. I Sang to Survive: a story of hope and human kindness;
  5. Meaning and Identity: An Interdisciplinary Perspective!
  6. SearchWorks Catalog?
  7. An only slightly more extensive line of research has emerged on the impact of interactive technologies for children aged For example, a study of the Building Blocks Pre-K math curriculum examined, among other questions, whether software integrated into a suite of curricular activities could have a positive impact on student learning.

    Students in classrooms using the software scored higher than children in classrooms that employed the curriculum without the software Sarama and Clements, see also, Clements and Sarama, On the literacy front, a series of e-book studies in Israel with 40 kindergarteners and 50 first-graders showed that digital text with embedded questions and audio dictionaries definitions spoken aloud when a child clicks on a word can lead to improvements in phonological awareness, vocabulary knowledge, and word-reading skills Korat, Good results are seen when educators use the products intentionally and are given support in integrating them into their classroom practices.

    One example comes from research on the television show The Adventures of SuperWhy , which is broadcast regularly on PBS and was also designed to be part of a classroom literacy curriculum for children aged In an experiment with the curriculum version, children watched episodes twice per week that were linked to teacher-led whole-classroom activities, small-group activities, online games, and individual exploration.

    Teachers received professional development and training in how to integrate these activities throughout the 10 weeks.

    The Path to Get There: A Common Core Road Map for Higher Student Achievement Across the Disciplines

    With funding from the U. Department of Education, researchers conducted a randomized controlled trial of low-income children in 80 preschools to determine the impact of the media-enriched literacy curricula. They found that children outscored the control group on measures of letter recognition, letter sounds, print concepts, and knowing the letters of their names Penuel.

    The most important feature of any high-quality educational environment is a knowledgeable and responsive adult Darling-Hammond, ; Ferguson, ; NRC, b; Watson, , and this is no less true for technology as part of the learning environment.


    • Common Core Mind Shifts.
    • The Path to Get There A Common Core Road Map for Higher Student Achievement Across the Disciplines;
    • Getting it right: Four key areas in effective Common Core implementation | EdSource!
    • Ethics and Community in the Health Care Professions (Professional Ethics)!
    • Common Core Mind Shifts.

    As research continues to examine what kinds of tools, media, and curriculum integration may be best for young children at which ages, one area of consensus is already forming: children consistently show greater signs of learning if they watch media with an adult who engages them in the content or helps them connect the ideas on screen to their world. Just as they do with books, adults can spark conversations about the subject matter of a video or a game by using dialogic questioning and other ways to prompt deeper engagement. In short, computers and other technology are used well in classrooms where educators use effective instructional strategies.

    Moreover, there is evidence that if educators receive more support in the use of computers, their students benefit, even more than if the support is targeted at students Fuller, As the science of how children are affected by and in what ways they can learn from various forms of media and technology emerges, research is starting to focus on a corollary question: What skills and knowledge do young children need to acquire about how to use technology and media—that is, what does digital literacy or technological fluency look like for young children?

    There are instances of children as young as 5 learning how to produce multimedia projects, and some case studies suggest that such projects could prompt better reading comprehension Hobbs and Moore, Given the role these tools are already playing in schools and workplaces, more scientific research is needed on how and when young children develop skills in and knowledge about technology and media. Educators working with older students— years old—have clearer expectations for the use of technology than their counterparts working with children under age 5.

    These standards call for students to be able to demonstrate the following with respect to using technology: research and information fluency; critical thinking, problem solving, and decision making; creativity and innovation; and communication and collaboration ISTE, a, At one count, nearly all 50 states had adopted or used part of the ISTE student standards.

    School Improvement Efforts Raise Student Achievement

    Another indicator of technology expectations for educators comes in the Common Core State Standards. Consider, for example, the kindergarten standard CCSS. To be able to help children use digital tools for writing, educators themselves need a high level of familiarity with those tools and developmentally appropriate methods for introducing them to young children who are still learning how to write with analog tools such as pens and pencils.

    Expectations for the use of technology are very different in settings outside of elementary schools. In prekindergarten and childcare settings, there is no widely adopted set of standards for using technology with these young children, nor are there common standards for what the children should know and be able to do regarding technology.

    The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines
    The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines
    The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines
    The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines
    The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines

Related The Path to Get There: a Common Core Road Map for Higher Student Achievement Across the Disciplines



Copyright 2019 - All Right Reserved